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Abstract

Phytoplankton form the basis of the marine food web and are an indicator for the overall
status of the marine ecosystem. Changes in this community may impact a wide range of
species (Capuzzo et al. 2018) ranging from zooplankton and fish to seabirds and marine
mammals.  Efficient  monitoring  of  the  phytoplankton  community  is  therefore  essential
(Edwards  et  al.  2002).  Traditional  monitoring  techniques  are  highly  time  intensive  and
involve  taxonomists  identifying  and  counting  numerous  specimens  under  the  light
microscope. With the recent development of automated sampling devices, image analysis
technologies  and  learning  algorithms,  the  rate  of  counting  and  identification  of
phytoplankton can be increased significantly (Thyssen et al. 2015). The FlowCAM (Álvarez
et al. 2013) is an imaging particle analysis system for the identification and classification of
phytoplankton. Within the Belgian Lifewatch observatory, monthly phytoplankton samples
are taken at nine stations in the Belgian part of the North Sea. These samples are run
through the FlowCAM and each particle is photographed. Next, the particles are identified
based on their morphology (and fluorescence) using state-of-the-art Convolutional Neural
Networks  (CNNs)  for  computer  vision.  This  procedure  requires  learning  sets  of  expert
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validated  images.  The  CNNs  are  specifically  designed  to  take  advantage  of  the  two
dimensional structure of these images by finding local patterns, being easier to train and
having many fewer parameters than a fully connected network with the same number of
hidden units.

In  this  work  we  present  our  approach  to  the  use  of  CNNs  for  the  identification  and
classification  of  phytoplankton,  testing  it  on  several  benchmarks  and  comparing  with
previous classification techniques. The network architecture used is ResNet50 (He et al.
2016).  The framework is  fully  written in Python using the TensorFlow (Abadi,  M. et  al.
2016) module for Deep Learning.

Deployment and exploitation of the current framework is supported by the recently started
European Union Horizon 2020 programme funded project DEEP-Hybrid-Datacloud (Grant
Agreement number 777435), which supports the expensive training of the system needed
to  develop  the  application  and provides  the  necessary  computational  resources  to  the
users.
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